
How-To Get Started with RESTFull Web Services

Apache Netbeans 12

REpresentational State Transfer (REST) is an architectural style for distributed

hypermedia systems, such as the World Wide Web. Central to the RESTful

architecture is the concept of resources identified by universal resource identifiers

(URIs). These resources can be manipulated using a standard interface, such as

HTTP, and information is exchanged using representations of these resources. In

this tutorial, you first learn a bit about REST and then you are shown how NetBeans

IDE supports this architectural style.

Figure 1. Content on this page applies to the NetBeans IDE 7.2, 7.3, 7.4 and 8.0

To follow this tutorial, you need the following software and resources.

Software or Resource Version Required

NetBeans IDE Java EE download bundle

Java Development Kit (JDK) version 7 or 8

Java EE-compliant application

server

Oracle WebLogic Server 11g-12c, or GlassFish Server

Open Source Edition 3.x or 4.x (Does not work on Tomcat
unless EJB support plugin is installed to Tomcat)

The jdbc/sample database on Java
DB (Derby) database server or

MySQL database server

On Java DB (Derby), The jdbc/sample database is
generated by NetBeans IDE when you install the IDE with

the GlassFish application server.

On MySQL, the IDE populates the sample database after

you create it on the MySQL server from within the IDE.

The GlassFish server can be installed with the Web and Java EE distribution of

NetBeans IDE. Alternatively, you can visit the the GlassFish server downloads page.

*Important: *Java EE 6 and Java EE 7 projects require GlassFish Server or Oracle

WebLogic Server 12c.

https://netbeans.org/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
https://glassfish.java.net/download.html

Introduction

RESTful web services are services built using the RESTful architectural style. Building

web services using the RESTful approach is emerging as a popular alternative to

using SOAP-based technologies for deploying services on the internet, due to its

lightweight nature and the ability to transmit data directly over HTTP.

The IDE supports rapid development of RESTful web services using JSR 311 - Java

API for RESTful Web Services (JAX-RS) and Jersey, the reference implementation for

JAX-RS.

For detailed information, refer to the following:

• JSR 311: JAX-RS: The Java API for RESTful Web Services

• Jersey, the open source JAX-RS (JSR 311) Reference Implementation for

building RESTful Web services

In addition to building RESTful web services, the IDE also supports testing, building

client applications that access RESTful web services, and generating code for

invoking web services (both RESTful and SOAP-based.)

Here is the list of RESTful features provided by the IDE:

1. Rapid creation of RESTful web services from JPA entity classes and patterns.

2. Rapid code generation for invoking web services such as Google Map, Yahoo

News Search, and StrikeIron web services by drag-and-dropping components

from the Web Services manager in the Services window.

3. Generation of RESTful Java Clients for services registered in the Web Services

manager.

4. Test client generation for testing RESTful web services.

5. Logical view for easy navigation of RESTful web service implementation

classes in your project.

In this tutorial, you will be shown how the IDE supports you in generating,

implementing, and testing RESTful web services.

RESTful Web Services, Persistence, and Entity Classes

http://jcp.org/en/jsr/detail?id=311
http://jersey.dev.java.net/
http://jersey.dev.java.net/

RESTful web services in Java rely on the Java Persistence API to communicate with a

database. Specifically, RESTful web services rely on entity classes and a persistence

unit, as defined in the Persistence API. Entity classes are Java classes that map to

objects in a relational database. According to The Java EE5 Tutorial, "An entity is a

lightweight persistence domain object. Typically an entity represents a table in a

relational database, and each entity instance corresponds to a row in that table." A

persistence unit consists of the set of entity classes, the data source, the

persistence provider, and the persistence unit’s own name, as defined in

a persistence.xml file.

You can use NetBeans IDE either to create entity classes and RESTful web services

in the same process, or you can use the IDE to create RESTful web services from

existing entity classes. In this tutorial, you use the RESTful Services from Database

wizard to generate entity classes and RESTful web services in the same process. The

wizard automatically generates the persistence unit.

Using a MySQL Database Server

If you use the MySQL database server instead of JavaDB (Derby), you need to

register the database server with the IDE and add the sample database to the server.

To use a MySQL database server with this tutorial:

1. Register your MySQL server in the IDE, if the server is not registered. To

register a MySQL server, go to the IDE’s Services window, right-click the

Databases node, and select Register MySQL server.

. A dialog opens in which you type the configuration details of your MySQL server,

including administrator user name and password. See "Configuring MySQL Server

Properties" in Connecting to a MySQL Database.

http://en.wikipedia.org/wiki/Java_Persistence_API
http://download.oracle.com/javaee/5/tutorial/doc/bnbqa.html
https://netbeans.apache.org/kb/docs/ide/install-and-configure-mysql-server.html

3. Start the MySQL server and connect to it. See "Starting the MySQL Server"

in Connecting to a MySQL Database.

4. Right-click the MySQL server node and select Create Database. The Create

MySQL Database dialog opens.

5. Type sample as the new database name. Grant full access to your root user, or

a user of your choice.

6. Click OK. A dialog opens informing you that sample is the name of a sample

database, and asking you if you want to create the tables, objects, and data

for this database.

https://netbeans.apache.org/kb/docs/ide/install-and-configure-mysql-server.html

7. Click Yes. The IDE creates and populates the database, and adds a

connection to the database.

Creating RESTful Web Services from a Database

The goal of this exercise is to create a project and generate entity classes and

RESTful web services from a database.

This section uses the JavaDB (Derby) database and the jdbc/sample data source.

JavaDB is included with the SDK. The jdbc/sample data source is generated by

NetBeans IDE automatically when you install the IDE together with GlassFish.

Creating the Project

To create RESTful web services, you need a Java Web application project.

*To create the project: *

1. Choose File > New Project (Ctrl-Shift-N on Linux and Windows, ⌘-Shift-N on

MacOS). Under Categories, select Java Web. Under Projects, select Web

Application. Click Next. The New Web Application wizard opens.

Alternatively, you can create a Maven Web Application. Choose File > New Project

(Ctrl-Shift-N on Linux and Windows, ⌘-Shift-N on MacOS). Under Categories, select

Maven. Under Projects, select Maven Web Application and click Next.

2. Under Project Name, enter CustomerDB . Click Next.

3. Select either Java EE 6 Web or Java EE 7 Web. Under Server, select the server

you want to use, but note that Java EE projects require GlassFish server 3.x or

4.x. Click through the remaining options and click Finish.

Important for Maven Projects: In NetBeans IDE 7.2 you cannot set the server

when you create a Maven web application. However, you need to set the server

before you can create a persistence unit. Therefore, after you create the Maven

web application, open the project’s Properties and set the server in the Run

properties. To open the project’s Properties, right-click on the Project node and

select Properties from the context menu.

Generating Entity Classes and RESTful Services

When you have a Java web application, add entity classes and RESTful web services

to the project.

*To generate entity classes and RESTful web services: *

1. Right-click the CustomerDB node and choose New > Other > Web Services >

RESTful Web Services from Database. The New RESTful Web Service wizard

opens, on the Database Tables panel.

2. In the Database Tables panel, if you are using the GlassFish server, select

the jdbc/sample data source from the Data Source drop-down field.

If you are using Tomcat, select jdbc:derby://localhost:1527/sample. If the Derby

database server does not start automatically, you need to start it from the

Databases tab in the Services window.

Note for MySQL users: You have to create a new data source. Select New Data

Source, give it an arbitrary descriptive name, and select

the jdbc:mysql://localhost:3306/sample database connection. You created this

connection when you created the sample database on MySQL.

3. Under Available Tables, select CUSTOMER and then click Add. The

DISCOUNT_CODE table, which has a relationship with the CUSTOMER table, is

also automatically added to the Selected Tables list. If you are using a MySQL

database or some versions of Derby, the MICRO_MARKET table is also added.

You now see the following (Derby version):

Figure 2. Database Tables panel of New Entity Classes from Database wizard,

showing CUSTOMER and DISCOUNT_CODE tables selected

4. Click Next. The Entity Classes page opens. Type entities for the Package

name. You now see the following (Derby version).

Note: The RESTful Web Services from Database wizard automatically generates

JAXB annotations. If you generate entity classes for a Java EE application with the

Entity Classes from Database wizard, and you might later want to create RESTful

web services from those entity classes, make sure the Generate JAXB Annotations

box is checked. You can also add JAXB annotations by hand to entity classes before

running the RESTful Web Services from Entity Classes wizard. For more information,

see NetBeans to Generate Simpler RESTful Web Services.

5. Click Next. A panel opens in which you can set the name and location of

generated service classes and packages. For Java EE projects, you have the

option of changing the name and location of the REST application

configuration class.

For this tutorial, accept the defaults and click Finish. When you click Finish the IDE

generates entity and service classes. In an Java EE project, the IDE also generates an

application configuration class, which is a subclass of Application.

http://netbeans.dzone.com/nb-generate-simpler-rest

The IDE now generates the RESTful web services. When the IDE is finished, look in

the Projects window. The generated entity classes are in the entities package and

services are in the service package. Java EE RESTful web services from a database

instantiate EntityManager in each service class. This removes the need for JPA

controller classes and generates simpler code.

Testing the RESTful Web Services

The goal of this exercise is to try out your application. You will create a new web

application for the tests and then use a wizard in the IDE to generate the tests in

the new project.

1. Choose File > New Project from the main menu.

2. Select the Web Application project type in the Java Web category. Click Next.

3. Type WebServicesTest for the project name. Click Next.

4. Select GlassFish Server as the target server and Java EE 6 Web or Java EE 7

Web as the Java EE version. Click Finish.

5. Right-click the CustomerDB project node and choose Test RESTful Web Services.

A dialog opens asking if you want to generate the test client inside the service

project or in another Java web project. This option lets you work around

security restrictions in some browsers. You can use any Web project, as long

as it is configured to deploy in the same server domain as the CustomerDB

project.

6. Select Web Test Client in Project and click Browse.

7. Select the WebServiceTest project in the Select Project dialog box. Click OK.

The IDE generates the file test-resbeans.html in the WebServiceTest project. The IDE

also automatically starts the server and deploys the CustomerDB application.

If the output window shows an error message that one or more classes fails to exist

and the project does not build, add the Jersey libraries to the compile-time libraries.

Right-click the project node and select Properties. In the Properties tree menu,

select Libraries. Click Add Library and browse for the Jersey libraries.

8. Right-click the WebServiceTest and choose Run.

9. Open your browser to http://localhost:8080/WebServicesTest/test-

resbeans.html

Figure 3. RESTful web service tester landing page in browser

On the left-hand side is the set of root resources. Here they are

named entities.customer , entities.discountCodes and entities.microMarket .

10. Click the entities.customer node. In the "Choose method to test" field, select

either GET (application/json) or GET (application/xml). Click Test. The test

client sends a request and displays the result in the Test Output section. The

test client dispays the Raw View by default. The following image shows the

response to an application/xml request.

http://localhost:8080/WebServicesTest/test-resbeans.html
http://localhost:8080/WebServicesTest/test-resbeans.html

There are 5 tabs in the Test Output section.

• The Tabular View is a flattened view that displays all the URIs in the resulting

document. Currently this view only displays a warning that Container-

Containee relationships are not allowed.

• The Raw View displays the actual data returned. Depending on which mime

type you selected (application/xml or application/json), the data displayed

will be in either XML or JSON format, respectively.

• The Sub Resource tab shows the URLs of the root resource and sub

resources. When the RESTful web service is based on database entity classes,

the root resource represents the database table, and the sub resources

represent the columns.

• The Headers tab displays the HTTP header information.

• The HTTP Monitor tab displays the actual HTTP requests and responses sent

and received.

Exit the browser and return to the IDE.

Courtesy: https://netbeans.apache.org/kb/docs/websvc/rest.html

Modified: 2021.10.13.5.15.PM

Dököll Solutions, Inc.

https://netbeans.apache.org/kb/docs/websvc/rest.html

